## FIELD MEASUREMENTS OF IMPACT SOUND INSULATION OF FLOORS



|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Area: |  |  |  |  |  |  |  |  |
| Receiver Rm | Location | Width | Length | Area | Height | Volume |  |  |  |
|  | Unit directly below - livingarea | 3.6 | 3.6 | 13 | 2.7 | 35 |  |  |  |


|  | Room Surfaces |  |
| :---: | :---: | :---: |
| Walls | Floor | Ceiling |
| Plasterboard | Carpet | Plasterboard |


| Frequency <br> $\mathbf{f}$ <br> Hz | L'nT (one-third octave) dB |  |  |
| :---: | :---: | :---: | :---: |
|  | Sub Base | Sub Base <br> Floor | Sub Base <br> Floor <br> Underlay |
| 50 | 59.4 | N/A | 52.9 |
| 63 | 57.5 | N/A | 52.2 |
| 80 | 56.0 | N/A | 53.8 |
| 100 | 53.4 | N/A | 47.7 |
| 125 | 47.8 | N/A | 42.7 |
| 160 | 48.0 | N/A | 42.6 |
| 200 | 47.0 | N/A | 42.3 |
| 250 | 47.1 | N/A | 41.4 |
| 315 | 47.6 | N/A | 43.7 |
| 400 | 47.4 | N/A | 46.1 |
| 500 | 48.2 | N/A | 44.9 |
| 630 | 48.3 | N/A | 37.8 |
| 800 | 48.3 | N/A | 30.7 |
| 1000 | 47.5 | N/A | 26.3 |
| 1250 | 48.4 | N/A | 20.1 |
| 1600 | 46.3 | N/A | 16.6 |
| 2000 | 48.2 | N/A | 15.4 |
| 2500 | 52.5 | N/A | 14.5 |
| 3150 | 52.8 | N/A | 12.4 |
| 4000 | 49.2 | N/A | 11.5 |
| 5000 | 44.5 | N/A | 11.6 |


|  | Sub Base |  |
| :---: | :---: | :--- |
| L'nT,w | 56 | AS ISO 717.2-2004 |
| Ci | -10 | AS ISO 717.2-2004 |
| $\mathrm{Ci}(50-2500)$ | -6 | AS ISO 717.2-2004 |
| $\mathrm{Ci}(63-2000)$ | -8 | AS ISO 717.2-2004 |
| AAAC | 2 Star | AAAC Guidleline |
| FIIC | 46 | ASTM E1007-14 |



## Definitions of Noise Metrics

Improvement of Impact Sound Insulation


FIIC:
Field Impact Insulation Class is a single-number rating of how well a floor system attenuates impact type sounds, such as footsteps. Calculated from third-octave band normalised impact sound pressure level data and referenced to $10 \mathrm{~m}^{2}$ as described in ASTM E989. The higher the single-number rating, the better its impact insulation performance.

## LnT, w

The Weighted Standardised Impact Sound Pressure Level when measured in situ referenced to a reverberation time (RT60) of 0.5 seconds. Used by the AAAC to determine their respective Star Rating
Ci:
Spectrum adaption term is a low frequency correction factor. Typically for massive floors such as concrete, the values are about zero while for timber joist floors Ci is positive because of the low resonant frequencies. Considers frequency range between 100 -and 2500 Hz
$\mathbf{C i}(50-2500)$ :
Same as above, but for the frequency range $50-2500 \mathrm{~Hz}$.

## $\mathrm{Ci}(125-2000):$

Same as above, but for the frequency range $125-2000 \mathrm{~Hz}$.

| AAAC Star R. | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| L'nT,w | 65 | 55 | 50 | 45 | 40 |
| FIIC | 45 | 55 | 60 | 65 | 70 |
| Comments | Below <br> BCA 62 | Clearly <br> Audible | Audible | Barely <br> Inaudible | Normally <br> Inaudible |

